


3GPP TSG-SA3 Meeting #104-e 	S3-212407
e-meeting, 16 - 27 August 2021					
Source:	JSRPC Kryptonite
Title:	Observations on TR 33.846
Document for:	Information, Discussion
Agenda Item:  5.5

Contact Person:	
Name:	Ekaterina Griboedova	
E-mail Address:	e.griboedova@kryptonite.ru

Attachments:	None

Summary
We attach below our observations on solutions presented in TR 33.846 [1].
Observations on solutions for resilience against identifier linkability (TR 33.846 clause 6.2)
Observations on solution #2.1
Addressed key issues 
The solution is declared to address key issue #2.1 (linkability attack by using failure message code, hereinafter referred to as "LFM attack") and key issue #4.1 (protection of SQN during AKA re-synchronisations, hereinafter referred to as "AMA attack").
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.1
	No protection 

	#4.1
	No additional comments


Мore detailed arguments supporting our concerns can be found below.
Short description of the solution
The solution suggests using the old (stored) KAUSF to encrypt error codes (SYNC_failure, MAC_failure) and AUTS by using XOR with a MASK, obtained as HMAC-SHA256 on KAUSF and randomness from RANDHE:
· If SYNC_failure is happened, the UE encrypts AUTS and SYNC_failure using XOR operation with MASK: (SYNC_failure ‖ AUTS ) ⊕ , where  = HMAC-SHA256(KAUSF, RANDHE).
· If MAC_failure is happened, the UE generates random pseudoAUTS and proceeds as described above (encrypts generated pseudoAUTS and MAC_failure code using XOR operation with MASK): (MAC_failure ‖ pseudoAUTS1 ) ⊕ , where  = HMAC-SHA256(KAUSF, RANDHE)
If there is no old KAUSF on the device, the fixed key (the string of zeros 0...0 of size 256 bits) is used. It is also important to note that if the KEY on the HN side is the KAUSF and the decrypted error code is not SYNC_failure or MAC_failure, the KEY is changed into 256-bit string of all 0s for decrypting the encrypted AUTS/RAND and error code.
[bookmark: _Hlk69474669]Concerns/comments about the solution
We will show that the solution still does not address key issue #2.1 by providing our variant of LFM attack.
The attack consists of three steps (see Figure 1):
[image: ]
Figure 1
1. On the first step the adversary intercepts one legitimate authentication request message containing the pair (R, AUTN) sent by the network to UE.
2. On the second step for any victim UE' the adversary replays captured (R, AUTN) and receives the following answer:
· If UE’ = UE, UE' sends (SYNC_failure ∥ AUTS ) ⊕ ;
· If UE’ ≠ UE, UE' sends (MAC_failure ∥ pseudoAUTS1 ) ⊕ ,
where  = HMAC-SHA256(KAUSF, R).
3. On the last step the adversary sends to the UE’ captured R and some random pseudoAUTN value. Irrespective of whether UE' = UE the adversary receives the following answer: 
· UE' will send (MAC_failure ∥ pseudoAUTS2 ) ⊕ ,
where  is the same as on previous step.
If the masked error code is the same on both steps 2 and 3, then UE’ ≠ UE, otherwise UE’ = UE. 
NOTE: The possibility to use the fixed KEY (the string of all zeros) to encrypt error codes can potentially lead to security problems if we succeed in forcing UE to use this fixed key (further research is needed to evaluate the possibility of this event).
Observations on solution #2.2
Addressed key issues 
The solution is declared to address key issue #2.1 (LFM attack) and key issue #4.1 (AMA attack).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.1 
	It is necessary to specify the encryption and MAC algorithms

	#4.1
	No additional comments


More detailed arguments supporting our concerns can be found below.
Short description of the solution
If the verification of authentication request (RAND, AUTN) fails, the solution suggests UE to react as follows:
· UE generates a one-time random number Nonce;
· If SYNC_failure is happened, the Authentication Response message consists of (SYNC_failure, Nonce, SUPI, AUTS);
· If MAC_failure is happened, the Authentication Response message consists of (MAC_failure, Nonce, SUPI, pseudoAUTS), where pseudoAUTS is generated randomly;
· This Authentication Response message is encrypted by using the encryption key KE, and its MAC value is calculated using the integrity key KM; the keys are generated as follows:
· KE = KDF(KAUSF, RAND‖length of RAND‖"Encryption Key"‖ Length of "Encryption Key"),
· KM = KDF(KAUSF, RAND‖length of RAND‖"MAC Key"‖Length of "MAC Key").
Concerns/comments about the solution
The current solution requires further clarification. It is necessary to specify the encryption and MAC algorithms used to protect Authentication Response message. At the same time, we draw attention to the following important points:
· If encryption is performed using XOR operation with KE, the solution does not address key issue #2.1 since an attack analogous to the one, described in 2.1.3, is possible.
· If encryption is performed using some fixed encryption algorithm, it contradicts the concept of optionality and flexibility in the choice of cryptographic algorithms.
· It is also worth noting that a good encryption mode does not need adding any Nonce to the plaintext   to prevent guessing attacks, i.e. ciphertexts C1, C2 for completely coincident messages M1 = M2 should look unrelated to the adversary without possession of a secret key (thanks to the random/unique IV in the encryption mode). If the mode does not have such a guarantee, then even with a Nonce value it may be possible to distinguish two ciphertexts (depending on the length of the block of encryption algorithm) and obtain some information about encrypted values.
We recommend considering the option of using Nonce value during key derivation step, e.g.:
· KE = KDF(KAUSF, RAND‖Nonce‖constant1),
· KM = KDF(KAUSF, RAND‖Nonce‖constant2).
Observations on solution #2.3
Addressed key issues
The solution is declared to address key issue #2.1 (LFM attack).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.1
	No protection


More detailed arguments supporting our concerns can be found below.
Short description of the solution
Solution #2.3 suggests making  a unified format for the authentication response message to protect the user privacy. The response should have the form (RES*, pseudoCAUSE, AUTS). The response is generated by the following rule:
· If the MAC_failure occurs, the UE generates (pseudo) RES* and (pseudo) AUTS with random numbers.
· If the SYNC_failure occurs (i.e. SQNHE is not in the correct range), the UE generates the response containing an AUTS calculated according to Clause 6.3.3 in TS 33.102 [2]. The (pseudo) RES* is generated with random numbers.
· If AUTN is valid, the UE calculates RES* according to Annex A.4 in TS 33.501 [3]. The (pseudo) AUTS is generated with random numbers. 
The HN checks the response as follows:
· If RES* is valid, then no errors were occurred during the procedure, pseudo AUTS and pseudo CAUSE are ignored.
· If RES* is invalid, then two possible cases are:
· If MAC value in AUTS is valid, then the SYNC_failure occurred. The HN derive correct SQNMS from AUTS.
· If MAC value in AUTS is invalid, then the MAC_failure occurred.
Concerns/comments about the solution
[bookmark: _Hlk71555577]We will show that the solution still does not address key issue #2.1 by providing our variant of LFM attack.
The attack consists of three steps (see Figure 2):
[image: ]
Figure 2
1. On the first step the adversary intercepts one legitimate authentication request message containing the pair (RAND, AUTN) sent by the network to UE.
2. On the second step for any victim UE' the adversary replays captured (RAND, AUTN) and receives the following answer:
· If UE’ = UE, UE' sends (pseudoRES*, pseudoCAUSE, AUTS).
· If UE’ ≠ UE, UE' sends (pseudoRES*, pseudoCAUSE, pseudoAUTS).
3. On the last step the adversary repeats the step 2. 
· If UE’ = UE, UE' sends (pseudoRES*, pseudoCAUSE, AUTS). This response contains the same AUTS as in the step 2.
· If UE’ ≠ UE, UE' sends (pseudoRES*, pseudoCAUSE, pseudoAUTS). This response contains new freshly generated pseudoAUTS, different from the previously used in the step 2.
If the AUTS value is the same on both steps 2 and 3, then UE’ = UE, otherwise UE’ ≠ UE. 
Also we can note that the solution includes redundant recommendations. For instance:
· pseudoCAUSE field is not used;
· if the authentication is correct, then there is no need to send pseudoCAUSE and AUTS, because the adversary can easily distinguish whether the authentication was successful or not using the traffic analysis after the authentication (it is either re-authentication, or further communications).
Observations on solution #2.4
Addressed key issues
The solution is declared to address key issue #2.1 (LFM attack) and key issue #4.1 (AMA attack).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.1  
	No protection

	#4.1  
	No additional comments


Мore detailed arguments supporting our concerns can be found below.
Short description of the solution
If the authentication request verification fails, the solution suggests the following procedure consisting of two steps.
On the first step UE hides the error code:
· If MAC_failure is happened, UE sends a one-time random pseudoAUTS value;
· If SYNC_failure is happened, UE generates a random value RAND_SQN and sends AUTS1 containing RAND_SQN instead of the SQNMS.
The second step is either re-run authentication (in case of MAC_failure), or to run resynchronisation procedure (in case of SYNC_failure). The second option is as follows:
· The Home network generates RAND_Sync = RAND_SQN ‖RAND_SVR, where  RAND_SVR is chosen randomly by the HN, computes an authentication vector built with RAND_Sync, sets AMF field to indicate a resynchronization procedure and sends the message to the UE.
· The UE checks validity of the authentication message. If AMF field is set to resynchronisation state and RAND_Sync is of the form  RAND_SQN ‖RAND_SVR (where RAND_SQN was generated by UE), then the UE returns AUTS2 containing real SQNMS.
Concerns/comments about the solution
We will show that the solution still does not address key issue #2.1 by providing our variant of LFM attack.
The attack consists of three steps (see Figure 3):
1. On the first step the adversary intercepts one legitimate Authentication request message containing the pair (RAND, AUTN) sent by the network to UE.
2. On the second step for any victim UE' the adversary replays captured (RAND, AUTN) and receives the following answer:
· If UE’ = UE, UE' sends AUTS1.
· If UE’ ≠ UE, UE' sends pseudoAUTS.
3. Even though the last step (re-authentication or re-synchronization) is of the same format, the (passive) adversary can clearly distinguish two cases: the AMF field is sent by HN in the cleartext of the Authentication request message and indicates whether re-authentication or resynchronization procedure is used (e.g. whether the MAC_failure or SYNC_failure occurred in step 1). Moreover, in the case of re-synchronization, at least three rounds are required (the first round to indicate failure, the second round to send valid SQNMS, and the third round to finish synchronization), whereas in the case of re-authentication only two rounds are required. This fact can also lead to possible attacks based on traffic analysis.
[image: ]
Figure 3
Observations on solution #2.5
Addressed key issues
The solution is declared to address key issue #2.1 (LFM attack) and key issue #2.2 (SUCI based attacks).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.2 
(TR 33.846 Table 6.0-1)
	#2.1 
(TR 33.846 Clause 6.2.5.3)
	No protection 
(#2.2)
	No additional comments
 (#2.1)

	
	Addresses key issue #4.1 if AUTS is encrypted


NOTE: it is necessary to make the declared key issues from Section 6.2.5 and from Table 6.0-1 of TR 33.846 consistent with each other.
More detailed arguments supporting our concerns can be found below.
Short description of the solution
If the authentication request verification fails, the solution suggests the UE to encrypt the failure cause value (MAC_failure or SYNC_failure) by using the method of calculating the SUCI value (i.e. the ECIES scheme) as follows:
· If MAC_failure is happened, UE constructs a scheme-input including the failure cause (MAC_failure) and a randomly generated pseudoAUTS value.
· If SYNC_failure is happened, UE constructs a scheme-input including the failure cause (SYNC_failure) and the AUTS value.
The HN can decrypt failure cause using its secret key.
Concerns/comments about the solution
The solution does not protect from SUCI replay attack (key issue #2.2), because this solution does not propose any changes to prevent it. Attack scenario goes like TR 33.846 clause 5.2.2.  
If AUTS is encrypted, it is clear that the adversary cannot obtain any information about SQNMS, so the solution can also address key issue  #4.1.
Observations on solution #2.8
Addressed key issues
The solution is declared to address key issue #2.2 (SUCI based attacks).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.2  
	No protection from “linkability by SUCI replay” (clause 5.2.2.1.1.1).

	
	Additionaly addresses key issue #3.2.


More detailed arguments supporting our concerns can be found below.
Short description of the solution
The solution proposes to use a specific key KSUCI when generating the MAC value for SUCI. The key KSUCI is derived from the long-term key K and randomness RANDMS generated by the UE. Only legitimate user (i.e. SUPI owner) can generate valid SUCI.
The solution follows the SUCI generation scheme, but the MAC tag is generated out of a new MAC key, which is the result of an additionally introduced function taking the Ephemeral MAC key and KSUCI as input. The rest of the known SUCI generation scheme is not touched.
The result of the scheme is "Final output = Eph. public key ∥ RANDMS ∥ Ciphertext ∥ MAC tag [∥ any other parameter]".
Concerns/comments about the solution
· The solution does not protect from “Linkability by SUCI replay” attack (clause 5.2.2.1.1.1): the potential active adversary can replace the new SUCI value with the old (and correct) one.
· It seems that the solution additionally addresses key issue #3.2 (SUPI guessing attack), as there is no way to generate valid SUCI without knowing the long-term key K.
Observations on solutions #2.10 and #2.11
Addressed key issues 
The solutions are declared to address key issue #2.2 (SUCI based attacks).
Our review of these solutions revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#2.2
	No protection from “linkability by generation of different SUCIs” (clause 5.2.2.1.1.2). 

	


More detailed arguments supporting our concerns can be found below.
Short description of the solutions 
Solution #2.10
The solution suggests adding timer T and keeping it with each received SUCI:
· When the HN receives SUCI (for the first time), it de-conceals it, obtains SUPI, starts timer T and stores SUCI and T.
· After receiving the same SUCI again, the HN checks whether the timer T expires, if yes, then the authentication is rejected, otherwise the authentication continues.
Solution #2.11
The solution suggests using two additional data structures: Data Unit queue and database with stored public keys (for each SUCI). Data Unit is a triple (SUCI, SUPI, Timestamp), where Timestamp is the time when SUCI is received.
1. After receiving SUCI, HN sets timestamp to the time when SUCI is recivied, and searches for SUCI in the message queue of the stored DUs. If SUCI is found and the timestamp in the corresponding DU is within TUDM time, HN continues authentication. HN removes the DUs whose time is before 60s in the message queue according to the timestamp.
1. If HN does not find SUCI in the message queue, it extracts the UE’ public key from the received SUCI and searches for this key corresponding to the SUCI in the database: 
· If the key is found, HN confirms that the SUCI is a replay attack, and the connection is interrupted. 
· If it is not found, HN confirms that the SUCI is not a replay attack. Then HN extracts SUPI, constructs the data unit DU=(SUCI, SUPI, Timestamp) and moves it into the message queue. After that HN continues authentication.
Concerns/comments about the solutions
· The solutions do not protect from “linkability by generation of different SUCIs” (which is the part of #2.2): the potential active adversary can generate legitimate SUCI by itself.
Observations on Solutions for availability aspects of SUCI usage (TR 33.846 clause 6.3)
Observations on solution #3.1
Addressed key issues 
The solution is declared to address key issue #4.1 (AMA attack), key issue #2.2 (SUCI based attacks) and key issue #3.2 (SUPI guessing attacks).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#4.1
	No additional comments

	#2.2
	No protection in current version, 
to provide it we propose additional modification (integrity protection of SUCI)

	#3.2
	No additional comments


More detailed arguments supporting our concerns can be found below.
Short description of the solution
The solution suggests using the long-term key K to encrypt the SQN value. UE sends a Registration Request message containing SUCI, new randomness from the UE side (RANDMS), encrypted SQN value (enc_SQN) and MAC (the integrity protection of SQN and RANDMS using the long-term key K).
After receiving  the Registration Request message, the HN de-conceals SUCI to obtain SUPI. Based on SUPI, HN decrypts enc_SQN to extract SQN using the corresponding long-term key K. The integrity protection is performed by comparing MAC and MAC'. MAC' is calculated in the same way as on the UE side. If verification is successful, HN stores the RANDMS related to the SQN. If verification fails, the message is discarded.
If the same SQN with a random RAND'MS is received in a new Registration Request message, HN checks the RAND'MS and responses to UE only if RANDMS is fresh. Otherwise, HN will discard the message and regard it as a replayed message.
Concerns/comments about the solution
The protocol is still vulnerable to SUCI replay attack (e.g., the solution does not address key issue #2.2).
The attacker can launch the linkability attack (TR 33.846 clause 5.2.2.1.1) as follows (see Figure 5):
1. On the first step the attacker captures SUCI in Registration Request message.
2. On the second step the attacker captures SUCI’ in Registration Request message of some unknown UE’ and modifies it by exchanging the SUCI’ used in this request by the previously captured SUCI.
3. According to TR 33.846 clause 6.3.1.2:
· If MACMAC’ (SUPISUPI’), HN discards the message and does not send a reply message.
· If MAC = MAC’ (SUPI=SUPI’), HN generates authentication vector and sends AUTN and other parameters to UE.
Consequently, the attacker can always distinguish whether SUPI=SUPI’.
[image: ]
Figure 5
We recommend adding the integrity protection of the SUCI value during MAC calculation: MAC = MACK (RANDMS, SQN, SUCI). In this case the solution will truly address key issue #2.2.
Observations on solutions on re-synchronisation in AKA (TR 33.846 clause 6.4)
Observations on solution #4.3
Addressed key issues 
The solution is declared to address key issue #4.1 (AMA attack), key issue #2.1 (LFM attack), key issue #2.2 (SUCI based attacks) and key issue #3.2 (SUPI guessing attacks).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#4.1 (Clause 6.4.3 and Table 6.0-1 of TR 33.846)
	No additional comments

	#3.2 (TR 33.846 Clause 6.4.3)
	#2.1 (TR 33.846 Table 6.0-1)
	No protection
	No protection

	#2.2 (Clause 6.4.3 and Table 6.0-1 of TR 33.846)
	No protection


NOTE: it is necessary to make the declared key issues from Section 6.4.3 and from Table 6.0-1 of TR 33.846 consistent with each other.
More detailed arguments supporting our concerns can be found below.
Short description of the solution
The solution suggests the following changes:
· UE generates SUCI containing SQNMS along with SUPI in Registration Request message: 
SUCI = [SUPI ║ SQNMS]ECIES
· TR 33.846 clause 6.4.3.3.3 states that in case of authentication procedure failure, the Authentication Failure message contains only a failure cause value (MAC_failure /SYNC_failure).
Concerns/comments about the solution
a) KI #2.1 concerns:
The protocol is still vulnerable to linkability attack (e.g., the solution does not address KI #2.1). Attack scenario goes like TR 33.846 clause 5.2.1.
The attacker can still distinguish the MAC_failure and synchronization failure using the failure CAUSE value.

b) KI #2.2 concerns (TR 33.846 clause 5.2.2.1.1):
The protocol is still vulnerable to SUCI replay attack (e.g., the solution does not address KI #2.2).
The attacker can launch the linkability attack (TR 33.846 clause 5.2.2.1.1) as follows (see Figure 6):
· On the first step the attacker captures SUCI in registration request message of UE, where 
SUCI = [SUPI ║ SQNMS]ECIES.
· On the second step the attacker captures SUCI’ in registration request message of some unknown UE’, where SUCI’ = [SUPI’ ║ SQN’MS]ECIES, and modifies it by exchanging the SUCI’ used in this request by the previously captured SUCI.
· According to TR 33.846 clause 6.4.3.3.1 HN generates an authentication vector using only existing SQNHE value (e.g., it does not use received SQNMS).
· If UE = UE’, then SQNHE will be valid for SQN’MS, the authentication procedure will be successful and temporarily stored SQNMS will be deleted from the database.
If UE ≠ UE’, then the SQNHE value will not be valid for SQN’MS and the authentication procedure will lead to the failure (UE’ will respond with the failure cause value).
Consequently, the attacker can always distinguish whether UE = UE’.
[image: ]
Figure 6
c) KI #2.2 and #3.2 concerns (TR 33.846 clause 5.2.2.1.2 and 5.3.2):
It seems that the solution is still vulnerableto the DoS attack (TR 33.846 clause 5.2.2.1.2) and SUPI guessing attack (TR 33.846 clause 5.3.2), because HN generates authentication vector using only existing SQNHE value (e.g., it does not use received SQNMS), and attacker can change SQNMS by any random number with the same length. 
Observations on solution #4.7
[bookmark: _Ref70001726]Addressed key issues 
The solution is declared to address key issue #4.1 (AMA attack), key issue #2.1 (LFM attack), key issue #2.2 (SUCI based attacks) and key issue #3.2 (SUPI guessing attacks).
Our review of this solution revealed the following concerns regarding the declared in TR 33.846 security properties:
	Declared security properties
	Our consideration

	#4.1 (Clause 6.4.7 and Table 6.0-1 of TR 33.846)
	No additional comments

	#3.2 (TR 33.846 Clause 6.4.7)
	#2.1 (TR 33.846 Table 6.0-1)
	No protection
	No protection

	#2.2 (Clause 6.4.7 and Table 6.0-1 of TR 33.846)
	No protection


NOTE: it is necessary to make the declared key issues from Section 6.4.7 and from Table 6.0-1 of TR 33.846 consistent with each other.
More detailed arguments supporting our concerns can be found below.
Short description of the solution
The solution consists of combination of two previous solutions (#4.3 and #4.5).
The solution suggests the following changes:
UE generates SUCI containing RANDMS and Conc(SQNMS) along with SUPI in Registration Request message: 
· Generate random RANDMS;
· Conc(SQNMS) = SQNMS ⊕ f5*(K, RANDMS);
· [bookmark: _Hlk71732096]SUCI = [SUPI ║ Conc(SQNMS) ║ RANDMS]ECIES
· In case of authentication procedure failure, the Authentication Failure message contains only a failure cause value (MAC_failure /SYNC_failure).
Unlike solution #4.5, MAC = f1*(K, RANDMS, SQNMS) is not calculated and is not sended.
Concerns/comments about the solution
a) KI #2.1 concerns:
The protocol is still vulnerable to linkability attack (e.g., the solution does not address KI #2.1).
The attacker can launch the attack similar to the 4.1.3 a) case.
b) KI #2.2 concerns (TR 33.846 clause 5.2.2.1.1 and 5.2.2.1.2):
The protocol is still vulnerable to SUCI replay attack (e.g., the solution does not address KI #2.2).
[bookmark: _Hlk71812532]The attacker can launch the linkability attack (TR 33.846 clause 5.2.2.1.1) similar to the 4.1.3 b) case, because HN generates authentication vector using only existing SQNHE value (e.g., it does not use received SQNMS).
c) KI #3.2 concerns:
The protocol is still vulnerable to SUPI guessing attack (e.g., the solution does not address KI #3.2).
The attacker can launch the attack as follows (see Figure 7):
 [image: ]
Figure 7
· At the first step the attacker chooses SUPI and sends Registration Request message to HN containing 
SUCI = [SUPI ║ RAND1 ║ RAND2]ECIES, where RAND1 and RAND2 are random numbers of the appropriate lengths.
· After obtaining SUCI value HN extracts SUPI and SQN’MS.
· If SUPI is correct and HN does not check SQN’MS, HN sends Authentication Request message. Attack is completed successfully.
· If SUPI is incorrect, HN sends Registration Reject message, and attacker chooses another SUPI.
Consequently, the attacker can always distinguish whether given SUPI is valid.
Summary
Summarizing all the concerns raised above we come to the following modified version of the Summary table presented in TR 33.846:
Summary table: Mapping of solutions to key issues
	Solutions
	Key Issues

	
	#2.1
	#2.2
	#3.1
	#3.2
	#4.1

	Solutions for resilience against identifier linkability
	
	
	
	
	

	#2.1: Handling of Sync failure by AUTS encryption
	x
	
	
	
	✓

	#2.2: Encryption of authentication failure message types by UE with new keys derived from K_AUSF
	x
	
	
	
	✓

	#2.3: Unified authentication response message by UE
	x
	
	
	
	

	#2.4: MAC-S based solution
	x
	
	
	
	

	#2.5: Encryption of authentication failure message with SUCI method
	✓
	x
	
	
	✓

	#2.6: Certificate based encryption of unicast NAS message
	✓
	
	
	
	✓

	#2.7: Mitigation against the SUCI replay attack
	
	✓
	
	
	

	#2.8: Assuring SUCI generation by Legitimate SUPI owner using KSUCI
	
	✓
	
	✓
	

	#2.9: MAC, SYNCH failure cause concealment
	x
	
	
	
	

	#2.10: Solution to Key Issue #2.2: SUCI replay
	
	✓!
	
	
	

	#2.11: Mitigate the SUCI replay based on UE's public key
	
	✓!
	
	
	

	Solutions for availability aspects of SUCI usage
	
	
	
	
	

	#3.1: Mitigation of SUPI guessing and SUCI replay attack using long term key
	
	x
	
	✓
	✓

	#3.2: Adding Check Value behind SUPI to mitigate the SUPI guessing attacks
	
	
	
	✓
	

	#3.3: Mitigation of SUPI guessing attack
	
	
	
	✓
	

	Solutions on re-synchronisation in AKA
	
	
	
	
	

	#4.1: Using MACS as freshness in the calculation of AK
	
	
	
	
	✓

	#4.2: Using symmetric encryption function to protect SQN during a re-synchronisation procedure in AKA
	
	
	
	
	✓

	#4.3: SQN protection by concealment with SUPI in USIM
	x
	x
	
	x
	✓

	#4.4: SQN protection during re-synchronisation procedure in AKA
	
	
	
	
	✓

	#4.5: AUTS SQNMS solution for 5GS
	
	
	
	
	✓

	#4.6: Using time-based or partly time-based SQN generation
	
	
	
	
	✓

	#4.7: SQN protection by concealment with SUPI with f5*
	x
	x
	
	x
	✓


Used notations:
	
	
	–
	solution from TR 33.846 that have not been discussed in this document;

	x
	
	–
	it was shown that the solution does not address the declared key issue;

	✓
	
	–
	it was shown that the solution address undeclared key issue;

	✓!
	
	–
	it was shown that the solution is still vulnerable to some attacks from the declared key issue.


References
[1]	3GPP TR 33.846 V0.12.0, Study on authentication enhancements in 5G System.
[2]	3GPP TS 33.102 V16.0.0, 3G Security; Security architecture.
[3]	3GPP TS 33.501 V17.0.0, Security architecture and procedures for 5G system.

2

2
image3.png

image4.png

image5.png

image6.png

image1.png

image2.png

